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Drag on a sphere in slow shear flow 
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A general closed form for the mobility tensor of a sphere moving in a fluid in 
stationary homogeneous flow is derived using the induced force method up to the 
first order in the square root of the Reynolds number based on the velocity gradient 
of the unperturbed flow. The closed form for the mobility tensor is valid for the 
time-dependent case as well as for the stationary case. As a special case, we calculate it 
explicitly for a simple shear flow. The result for the x, z-component for the stationary 
case, which gives the lift force, agrees with the value calculated by Saffman. 

1. Introduction 
Saffman (1965) calculated the lift force acting on a sphere moving with a constant 

velocity relative to a fluid in shear flow. He showed that if a sphere with radius a 
moves with a relative velocity, u, along the direction of the unperturbed velocity field, 
it feels a force perpendicular to the direction of the velocity of the sphere and toward 
the streamlines moving in the direction opposite to u, which is given by 

(1.1) Fl@ = 6naqu x 0.343Re, 1/2 . 

Here q is the shear viscosity and Rep = pa2/v is the Reynolds number defined in 
terms of the shear rate p, the radius and the kinematic viscosity v = q/p ,  where p is 
the density of the fluid. He derived (1.1) by solving the Navier-Stokes equation with 
stick boundary conditions using the method of matched asymptotic expansions. He 
assumed that the relative velocity of the sphere is small enough such that 

Re, << << 1, (1.2) 

where Re, = ua/v is the Reynolds number based on the translational velocity of the 
sphere. He concluded that the lift force on the sphere has its origin in the disturbance 
of the velocity field at the distance where the viscous effect becomes comparable 
with the convective effect and where the sphere can be regarded as a point force. 
Saffman's result was extended straightforwardly to the case where the particle is 
moving with a constant velocity in an arbitrary direction relative to shear flow by 
Harper & Chang (1968). 
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The method of matched asymptotic expansions was also employed in the calculation 
of the drag on the particle in pure rotational flow by Herron, Davis & Bretherton 
(1975), Drew (1978), and Gotoh (1990), and in elongational flow by Drew (1978). 

Mclaughlin (1991) extended Saffman’s result to the case where Re,, Re;’’ << 1. 
He solved the Navier-Stokes equation with a point force located at the centre of 
the coordinate system. He showed that, as Re, increases, the lift force decreases 
monotonically to a very small value. All the authors referred to above assumed that 
both Reynolds numbers are much smaller than unity. 

The purpose of this paper is to give the mobility tensor up to the first order in the 
square root of Reg for the time-dependent motion of the sphere as well as for the 
stationary case, assuming the same conditions as Saffman’s, (1.2), for the Reynolds 
numbers involved. For this purpose, we use the induced force method. This method 
was introduced by Mazur & Bedeaux (1974) to generalize Faxen’s theorem to the 
time-dependent case. The advantage of this method is that one does not have to 
evaluate the velocity field explicitly by solving the Navier-Stokes equation in order 
to calculate the drag force exerted on the sphere. This method has subsequently 
been used to calculate the mobility tensor in the case where the sphere is moving 
along the axis of a centrifuge (Weisenborn 1985), in pure elongational flow (Bedeaux 
& Rubi 1987) and in arbitrary homogeneous flow (Pkrez-Madrid, Rubi & Bedeaux 
1990). However, both Bedeaux et al. and Pkrez-Madrid et al. used an approximate 
expression for the velocity field due to a point force. This resulted in a value of the 
numerical coefficient in the lift force which differs from the one found by Saffman. The 
approximation was made in the Fourier-transformed Navier-Stokes equation where 
a non-algebraic term was neglected which, on the basis of symmetry considerations, 
was argued to give contributions of a higher order in Reg. Owing to the divergent 
nature of the contributions due to this term, this argument is not correct. Though the 
approximation also leads in a simple and straightforward manner to results which 
are qualitatively correct for the matrix elements which were not given by Saffman, 
the numerical values of the coefficients differ from the exact ones. In this paper, we 
address this problem and show that the induced force method reproduces the lift force 
given by Saffman if one uses the exact expression for the velocity field due to a point 
force. For this purpose, we use a method developed by Onuki & Kawasaki (1980), 
where the exact solution is constructed by the introduction of a time-dependent 
wavevector. Saffman’s result is generalized by taking the effect of the acceleration of 
the sphere into account and calculating the full mobility tensor up to the same order 
in Reg. A closed form for the mobility, valid for non-stationary motion in arbitrary 
homogeneous flow, is given in terms of a Green function. Using this closed form, we 
analyse the large-frequency regime and the stationary case in detail. 

This paper is organized as follows. In 92, we give the equations of motion which 
describe the dynamics of the fluid and of the sphere. Then the problem is reformulated 
by introducing the induced force field. In 93, we construct the general solution for 
the velocity field in terms of the induced force field through the Green function, 
which is by definition equal to the velocity field due to a point force, in terms of the 
time-dependent wavevector. Section 4 is devoted to the derivation of a closed form 
of the mobility tensor in terms of the Green function. We assume that the inertial 
effect of the fluid and the sphere is small on the time scale under the consideration. 
If one assumes that the mass density of the sphere is of the same order as that of 
the surrounding fluid, the time for the inertial effect to relax, z ~ ~ ,  is approximately 
a2/v, while the time regime where the effect of the homogeneous flow becomes 
predominant is of order of zg = 1/p. Since z i n / ~ g  = Reg << 1, we focus on the time 
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regime much larger than qn. This introduces another small dimensionless parameter, 
the rgdius multiplied by the inverse penetration depth, which is defined in terms of 
the frequency o by aa = (-ioa2/v)'/* (with Re[a] 2 0, where Re denotes the real 
part). The mobility tensor we derive is valid up to the first order in this parameter. As 
a special case, the mobility tensor for the simple shear case is evaluated in 95. There 
we focus on the two extreme cases. On the one hand, we consider the non-stationary 
case where aa is much larger than Re;'2, or in other words to the case that the 
penetration depth is much smaller than the distance from the centre of the sphere to 
the so-called outer region used in the method of matched asymptotic expansions. On 
the other hand, we consider the stationary case for which the penetration depth is 
infinite. For the the stationary case, the value of one of the off-diagonal components 
which gives the so-called lift force agrees with the result of Saffman. A comparison 
with the results of Harper & Changt for the stationary case is less satisfactory, a 
matter which is discussed in detail in 95. In the last section, we discuss our results. 

2. The equations of motion and the induced force field 
We consider a sphere with radius a, whose centre is located at a position R(t),  

moving through an incompressible fluid. The motion of the fluid surrounding the 
sphere is described by the Navier-Stokes equation and the continuity equation : 

for I Y - R(t )  I >  a, (2.1) 

a 
at 

p - u + p U ~ V u  = - V . P ,  

v*u = 0 
with the stress tensor 

where p is the mass density, u is the velocity field, p is the hydrostatic pressure and 7 
is the shear viscosity. On the other hand, the motion of the sphere is described by 

d 
dt 

m-u(t) = K ( t )  + Kext(t) = - P - n  + K,,(t), 

where m is the mass of the sphere, u(t) is the velocity, K ( t )  is the force exerted on 
the sphere by the fluid and K,,(t) is an external force. K ( t )  is given by integration 
of the stress tensor over the surface of the sphere at time t, S( t ) .  Here n is the unit 
vector pointing outward from the surface of the sphere. Those equations for the fluid 
and the sphere are related to each other through boundary conditions. We use stick 
boundary conditions at the surface of the sphere: 

U(Y, t )  = u(t) + a(t) x (v - R(t ) )  for I Y - R(t )  I= a, (2.4) 

In this paper, we consider the general case where, in the absence of the sphere, the 

(2.5) 

where f l  is a constant traceless tensor. All the general results will be for this case. 

t Notice that in their expression for FI3 in eq.(A.28) one should replace k3 by klk3 and kl  by k i .  

where a(t) is the angular velocity of the sphere. 

fluid is in homogeneous incompressible flow given by 

uo(r) = B ' Y, 
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The explicit calculation of numerical prefactors is done, in particular, for the case of 
simple shear flow: 

Pi, = Pdizdjx, SO that UO(Y) = (O,O, Px), (2.6) 

where P is the shear rate. In order to make the discussion clear, we choose a co- 
moving coordinate frame in the centre of the sphere:Then, the unperturbed velocity 
field is given by 

uo@, t )  = p ( r  + R(t))  - 4 t h  (2.7) 

where Y is now the distance from the centre of the sphere. In consequence of this 
choice of the reference frame, the boundary condition can be rewritten as 

u(r,t) = Q(t)  x r for r = a. (2.8) 

Linearizing the Navier-Stokes equation in the perturbation caused by the presence 
of the sphere, 6 u  = u - UO, one obtains 

a 
at 1 for r > a, 

p - u  + p { p .  ( r  + R(t ) )  - u( t ) }  .vu + p p * u  = -VP' + qv2u  - P 

with a modified pressure defined by 

vp* = vp - pp * uo(r, t).  (2.10) 

The last term on the right-hand side of (2.9) originates from the fact that we chose the 
non-inertial frame as a reference frame. In the cases of simple shear flow, rotational 
flow and elongational flow, (2.10) may be integrated and p* can be expressed explicitly 
as 

p * = p - '  2 P (  y -  B.R( t ) ) .82 ' (Y--B.R( t ) )+pr .B.u( t ) .  (2.11) 

Particularly for simple shear flow, this expression reduces, using p2 = 0, to 

p' = p + pr-/?.u(t). (2.12) 

As was already pointed out by Saffman (1965) and McLaughlin (1991), if Re, = 
JAuJa/v satisfies Re, << the Oseen term Au(t) - Vu in (2.9) can be neglected. Here 
Au = u - R is the relative velocity of the sphere to the local velocity field. This 
can be justified as follows. There are two distinguishing length scales involved in the 
system: L, = v/lAul and Lp = ( v / P ) ' / ~ .  The condition (1.2) shows that Lp << L,. At 
a distance of the order Lg, the inertial term p ( p  * r )  - Vu + pp * u is the same order as 
the viscous term qV2u, while the Oseen term is the order of Re,/Re;" compared to 
the inertial term, so that the Oseen term can be neglected. At a distance larger than 
Lp, the Oseen term becomes even smaller compared to the inertial term. On the other 
hand, at a distance smaller than Lp, the viscous term becomes predominant, while 
the Oseen term becomes small. Though the inertial term also becomes negligible in 
this region, one can safely keep this term in the equation. We thus find that for 
Re, << Re;/2 << 1, (2.9) reduces to 

a du(t) 
at dt' 1 (2.13) 

p - u  + p r + +  *vu + pp * u = -vp* + qv2u - p 

v*u = 0, I 



Drag on a sphere in slow shear flow 377 

where Pt stands for the transpose of p. In the method of matched asymptotic 
expansions, one distinguishes an outer region, r >> Lp, and an inner region, r << Lp. 
In the outer region, one uses a solution of the above equation for a point force in 
the centre of the sphere and matches it to a solution of the equation in the inner 
region where, as discussed above, one may neglect the terms proportional to p. In the 
method described below, we give a solution of (2.13) valid for all r 2 a in terms of an 
integral over the force distribution on the surface of the sphere. This solution reduces 
to the one used in the method of matched asymptotic expansions in the outer region 
which is verified explicitly below. In the inner region, it also reduces to the solution 
in the method of matched asymptotic expansions to the first order in an expansion 
in Re;''. In our analysis below, we do not verify this fact explicitly. The method 
we use enables us to calculate the integral over the force density on the surface of 
the sphere (the total force) without the need to calculate the velocity field in the 
inner region explicitly. The integral representation is enough. As such our method is 
simpler than the method of matched asymptotic expansions. One of the reasons for 
verifying in such detail that our method leads to the same result as the method of 
matched asymptotic expansions for simple shear is to establish that the two methods 
are in fact equivalent. 

Using the induced force method (Mazur & Bedeaux 1974; Bedeaux & Rubi 1987), 
the linearized Navier-Stokes equation, (2.13), is extended inside the sphere and is 
reformulated for all r as 

Here &;nd is the induced force field introduced in order to take the forces exerted by 
the sphere on the fluid into account. As (2.13) holds outside the sphere, one has 

f & ( r , t )  = 0 for r > a. (2.15) 

Inside the sphere, the induced force is chosen such that 

for r < a. 
u(r , t )  = n(t) x Y 

p = o  
(2.16) 

There is freedom of choice of the field variables inside the sphere. A different 
choice is compensated by a corresponding modification of the induced force. Physical 
quantities like, for instance, the force on the sphere are independent of the particular 
choice. Here we made a choice such that the velocity field is continuous at the surface 
of the sphere. In order to make (2.14) consistent inside the sphere, the induced force 
field has to satisfy 

= 4rlner(Y, t )  for r < a. (2.17) 

Including a possible singular contribution on the surface of the sphere, the total 
induced force has the general form 

(2.18) 

where Fs(n,t)  is the induced force density per unit area of the surface of the sphere. 

&(r, t )  = F,(n, t )6(a - r )  + L e r ( r ,  t )  for r < a, 
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Substituting (2.14) into (2.3) and using (2.16), (2.17) and (2.18), the force exerted on 
the sphere by the fluid, K(t) ,  can be related to the induced force density by 

(2.19) 

As we shall show in the subsequent sections, it is sufficient to construct a formal 
solution of (2.14) using a Green function in order to obtain K(t). It is not necessary 
to construct an explicit solution for the velocity field around the sphere. 

3. General solution 

velocity field 
In order to solve (2.14), we introduce Fourier transformation in space, e.g. for the 

u(k, t )  = dr e-*'ru(r, t).  (3.1) J 
The equations of motion, (2.14), then become 

k - u  = 0, I 
(3.2) 

where v = q / p  is the kinematic viscosity. The formal solution of these equations is 
given by 

u(k, t )  = uo(k, t) + a }] *Pk'&j(k,t ') (3.3) 

with 

g(k) = vk2 + (1 - 2IX).fl, (3.4) 

where k = k/lkJ and 
A h  

P k = l - k k  (3.5) 

is the transverse projection operator. For the derivation of (3.3), refer to Appendix 
A. Note that, owing to the presence of the term containing a differential operator 
in k, the operator acting on the homogeneous term in (3.3) is not diagonal in the 
k-representation. Bedeaux & Rubi (1987) and Pkrez-Madrid et al. (1990) neglected 
this term. 
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Following Onuki & Kawasaki (1980) t, we make use of the relations 

where Ft is the time-ordering operator, defined by 

1 - dzl g(k(z1)) + g(k(zl)).g(k(z2)) - . . . . (3.8) I’ 
Here we have introduced the time-dependent wavevector defined by 

k( t )  = exp [B+ t ]  * k .  (3.9) 

Then, (3.3) becomes 

~ ( k ,  t )  = ~ o ( k ,  t )  + G(k, t - t’) &d(k(t - t’), t’), (3.10) 

where the Green function is defined by 

G(k,t) = -F+ exp - dzg(k(r)) *Pk(t). 
P [ I ’  1 (3.11) 

By Fourier transformation of (3.10) back to the r-representation, one obtains 

U(Y, t )  = UO(Y, t )  4- dt’ dr’ G(r - Y’, t - t’) . &d(r(t - t’), t’), (3.12) L J 
where 

~ ( r ,  t )  = J& eik“G(k, t )  (3.13) 

and 

r ( t )  = exp [-fit] - r .  (3.14) 

Equation (3.12) is the general solution for (2.14). This expression is valid for an 
arbitrary constant matrix, B, in so far as the governing equation is given by (2.14). 
Equation (3.14) stands for the transformation to the co-moving frame which is moving 
along with the local unperturbed velocity field. In the case of simple shear flow, the 
above equation reduces to the Galilean transformation 

r ( t )  = r - B.r t. (3.15) 

The velocity field is related to the induced force at all previous times and at all the 
positions through the Green function. However, the position of the induced force has 
to be replaced by a co-moving one because the force at time t’ and at a position r 
which is supposed to affect the velocity field flows along with the local velocity field, 
so to say, and will be located at r( t  - t’) at time t. 

7 They used the relation (3.6) and (3.7) for a scalar variable. In our case, however, as the variables 
are vectors, the time-ordering operator has to be introduced. 
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Furthermore, note that the solution given above has following translational invari- 
ance : 

v(r + ro, t )  = UO(Y + ro, t )  

dt' dr' G(v - r ' ,  t - t') *&(r'(t - t') + ro(t - t'), t'). (3.16) 

Thus, a shift of &d over yo leads to a corresponding shift of the velocity field, v - UO. 
Though this should be satisfied for obvious reasons, it is good to see that the general 
solution has this property in such a clear manner. 

+L S 

4. The mobility tensor 
By using the result of the previous section and (2.18), one obtains a one-to-one 

relation between the velocity field at the surface of the sphere and the induced force 
in the frequency representation in the following form: 

(4.1)  an, W )  = ~o(an,  W )  + dn' M(n, w I n') * F,(n', W )  + !(an, 0). s 
Here we have used that a position at the surface of the sphere is given by an in terms 
of the unit vector pointing outward on the surface. Furthermore 

is the coefficient connecting the velocity field at the surface to the induced force 
density and 

is the contribution from the induced force inside the sphere. One may expand a 
function of n in terms of a complete set of irreducible tensors (see, for example, 
Mazur & van Saarloos 1982; Mazur & Weisenborn 1984) in the following form: 

(21 + l)!! n 1 
00 

= c 1 !  n oa(1) 
1=0 

with a multipole coefficient 

a(2) = - dn n ~(n). 
4.n ' I  

(4.4) 

(4- 5 ) 

Here i stands for the symmetric and traceless tensor of rank 1 constructed with n. 
The symbol 0 denotes the full contraction of the tensor and the coefficient of 
rank 1, a(2). By using these formulae and (4.1), one finds the following set of linear 
equations for the multipole coefficients of an arbitrary rank: 

(4-6) 
(21'+ l)!! 

l ' !  v(w, 2 )  = v o ( w  1)  + c M ( W ,  1 I 1') 0 F s ( W ,  1') + f (w,  2) .  
I'=O 

Here we define the (1 + 1' + 2)-fold matrix, M(w, 1 I l ' ) ,  by 

1 n 1' 
M(o,l  I 1') = - dn dn' # M(n,w I n') n' . 

471 's s (4.7) 
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According to (2.19), the force exerted on the sphere, K(co), is related to the first 
multipole coefficient of the induced force density by 

K ( w )  = -47ca2Fs(o, 1 = 0). (4.8) 

Equation (4.6) can be solved in terms of the first multipole coefficient of the induced 
force density formally as follows (Mazur & van Saarloos 1982): 

u(w, 0)  - U O ( 0 ,  0 )  - f(o, 0)  
a, a, m 

j=O ml = 1 ml= l,ml #rnj-, 

~ ( o ,  o I ml) o ~ - l ( o ,  ml I ml) o ~ ( w ,  ml I m2) o . . . M-'(o,mj 1 mj) o 
[ ~ o ,  mj I 0)  ~ s ( o , O )  + ~ ( w ,  mj) - u o ( ~ ,  mj) - f(o, mi)] . (4.9) 

It can be easily shown that M(o, 1 1 1') = 0 for 1 + I' = odd by using the symmetric 
property of the irreducible tensors and the Green function. Furthermore, one finds, 
using (2.7), (2.16), and (4.3), 

oi,jlj2-.jl(W, 1)  = :aeij,kQkdll, (4.10) 

(4.11) 

(4.12) 

For M(o, 1 I 1') with (1 - 1'1 = even, the following relation may be shown to be valid: 

U O ( 0 ,  1)  = [B R(o) - u(o)l&o + $m1, 

f(o, 1 )  = f(o, 0)40 + f (w,  1 ) h  
where eijk is the Levi-Civita tensor. 

M(o, 1 I I ' )  = 0 ({ d ( o / P )  }'"'I) , (4.13) 

where d(x) is a function which has the asymptotic value (-ix)l12 for large x and 
which approaches a constant for small x. Thus if o is large enough compared to p, 
one can replace d ( o / P )  in (4.13) by aa = (-ioa2/v)'12. The derivation of (4.13) 
is along the same lines as a similer derivation given by Mazur & Weisenborn (1984) 
for the calculation of the Oseen drag on a sphere and, as it is rather long and not 
very illuminating, it will not be given explicitly. Notice the fact that the analysis in 
this paper is restricted to cases such that the penetration depth is large compared 
to the radius of the sphere, i.e. aa << 1. The important conclusion is that for 
o > p and for o < p, i.e. both for a penetration depth either smaller than or larger 
than Lp = (v/p)'12, the matrix elements M(o, l  I 1') with I 1 - 1' 12 2 in (4.9) may 
be neglected. We note that in the following section we will calculate the friction 
coefficient for both o >> p and o + 0, i.e. both for a penetration depth much smaller 
than Lp and when the penetration depth is infinite. 

Also, the contribution from the zeroth coefficient of the induced force inside the 
sphere is given, up to the lowest order, as 

(4.14) 

The first term in the square bracket on the right-hand side is an inertial effect of the 
excluded fluid and the second one is the buoyancy force caused by the gradient of 
the hydrostatic pressure. As these terms are the second order in cta or one can 
neglect them as well. Other non-zero quantities, u(w, l), u o ( o ,  1) and f(o, l), do not 
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contribute because the coefficient M(w,O I 1) is zero. Then up to the first order in 
Re;", one obtains the simplified relation 

Fs(w7O) = M(w,O I O)-l 0 {u(w,O) - uo(w,O)). (4.15) 

By substituting this equation to (4.Q one obtains 

u(w)  - f l -R(w) = -p (w)*K(w) ,  (4.16) 

where we used (4.10) and (4.11). In this expression, p(w)  is the mobility tensor which 
is given by 

(4.17) 

This together with the solution of the Navier-Stokes equation, (3.12), is the central 
result of this paper. It shows that the mobility tensor can be expressed in terms of the 
Green function. In this expression, the time-dependence is also taken into account. 
One should notice that we did not specify f l  during the derivation of (4.17), so that it 
can be applied for arbitrary homogeneous flow in so far as the flow is incompressible 
and can be written as a linear function of the position. In the next section, we will 
calculate the mobility tensor for the simple shear case using the above expression. We 
will reproduce Saffman's result for the lift force. It will turn out that, if one replaces 
the induced force, f i n d ,  by a point force which is given by 

&nd(r ,  t) = -K(w)d(r)7 (4.18) 

then the explicit expression given in (4.17) for the x,z-component of the mobility 
for simple shear is simplified because sin kalka and sin k(t)a/k(t)a are then replaced 
by unity and (4.17) reduces to the one Saffman derived, (5.25) below, in a much 
more direct way. Note in this context that, in an analysis given by McLaughlin, 
the lift force was also calculated using a velocity originating from the point force 
defined by (4.18). Though this replacement is found to give the exact result by explicit 
calculations and for obvious reasons it gives the correct velocity field far from the 
sphere, it is nevertheless somewhat surprising that (4.17), which is found by averaging 
the velocity field close to the sphere, may be reduced in this manner. This fact is, 
however, very much in line with Saffman's conclusions regarding the limited role of 
the inner expansion of the velocity field. 

5. Simple shear case 

We have derived the frequency-dependent mobility tensor which is applicable to 
arbitrary stationary homogeneous flow and is valid up to the lowest order in 
and aa in the previous section. In this section, we restrict ourselves to simple shear 
flow. As it is not possible to give the analytical form of the mobility for an arbitrary 
frequency, we focus on two particular cases in the following: the case where w >> p 
and the stationary case, i.e. w = 0. 
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5.1. The case where o >> f i  
In this regime, Lg is much larger than the penetration depth which is much larger 
than the radius of the sphere. We introduce two small dimensionless parameters 

o a2 - - - i(aa)2 = € 2 .  

383 

(5.1) P =  - € 1 ,  
0 V 

In order to make the discussion clear, we introduce dimensionless variables defined 
by .. 

o t  = T ,  oz 5 t, ka  = k .  

Then the mobility tensor, (4.17), is written as 

where 

c ( i ,  t )  = (1 + 2€1f,f,t + &t2) , 

D(k,  t )  = t ( 1  + elf,f,t + 4 f ; t 2 / 3 )  , 

Henceforth tildes will be omitted for simplification. After integrating over k ,  one 
arrives at 

1 € 2  { c(k ,  t )  - 1 

x 1: l w d t  c(k ,  t)D1l2(k, t )  

Expanding the integrand in el up to the first order, one obtains 
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After integrating over k and t, one obtains for the mobility 
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(5.10) 

This result may in fact be shown to be valid for an arbitrary f l  and not only for 
simple shear. Equation (5.10) shows that off-diagonal components appear which 
are symmetric and proportional to p / o  in addition to the well-known frequency- 
dependent diagonal contribution given already by Stokes (1851). 

5.2. The stationary case, o = 0 
In the stationary limit, the penetration depth becomes infinite and as such much larger 
than Lp which is much larger than the radius of the sphere. We define dimensionless 
variables by 

fit = ?, p z  = ?, ka = k. (5.11) 
-, 

Then, (4.17) is written, for o = 0, as 

1 dk co sin& sinc(k,?)k 
p(0) = - 1- 1 d? 

a ~ R e p  (2.13 o k c(k,?)k 

xF,exp [-ld?A(k,?).B] * (1-  me6ti*k 1 ee"*k), (5.12) 

where 

c(k ,  t )  = (1 + 2LxLzt + Lit') , 

D(k, t )  = t (1 + L,f,t + &'/3) , 

(5.13) 

(5.14) 

h 2 e 6 ' t .  k e6tt. i;, 
A(k, t) = 1 - - 

c'(k, t) 
(5.15) 

(5.16) 

Henceforth, tildes will be omitted for simplification. After integrating over k ,  one 
arrives at 

dk mdt 1 Rep { c(k ,  t )  - l} Rep& t )  /& d c(k ,  t)D1I2(k, t )  [- 4D(k,t) '1 (l [- D(k,t) I) 
(5.17) 

Using the property (see, for example, Rabin, Wang & Creamer 1989) 

A(k, 7 1 ) * 6 * A ( k ,  7 2 ) '  6 . .  . A(k, 7 , ) ' 6  

= Axz(k, 72)Axz(k ,  73)  . . Axz(k2 T n ) A ( k ,  71) * 6, (5.18) 
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the term involved with the time-ordering can be calculated explicitly and given by 

where 

(5.21) 

(5.22) 

with 

A 

I (k ,  t) = A 1 { arctan ( " ) - arctan ( " ) } .  (5.23) 
k,( 1 - f ; ) l I 2  (1 - k?)'/2 (1 - f ; ) 1 / 2  

Substituting (5.19) into (5.17), one obtains the explicit expression for the mobility 
tensor. To make a comparison with Saffman's result, we will focus on the x,z- 
component of the mobility. The explicit expression is then given by 

1 dk f,f, +f?t exp [- Rep { c(k, t )  - l} '1 
312 Re112 /G 1 dt c(k, t)D1I2(k, t )  4D(k, t )  

PXZ(0) = - 
8.n av p 

(5.24) 

Up  to the lowest order in Re;12, (5.24) can be rewritten as 

The derivation of this equation is given in Appendix B. This integral is exactly the 
same as the one Saffman derived. By integrating numerically, one obtains 

P X Z ( 0 )  = -- x 0.343Re:l2. (5.26) 
6nay 

Likewise, it is possible to evaluate other components : 

"'y ) R.1') . (5.27) 
0.327 0 

0.944 0 0.0735 
p(0) = 1 { 1 - ( 0 0.577 

6nay 

The details of the derivations are given in Appendix B. 
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This result shows that, besides the x, z-component which Saffman (1965) and 
McLaughlin focused on, the z,x-component and the diagonal components of the 
mobility tensor are also modified in the lowest order in Re;’2. Our value for the 
x, z-component is identical to the value given by Saffman. Even though our analytical 
expressions for all components, (5.24) and (B 7)-(B lo), are the same as the ones 
given by Harper & Chang (1968), their numerical values for the y ,  y-, z, x- and z ,  z- 
components differ, in particular for the z ,  z-component considerably. The differences 
in the numerical values clearly have their origin in the numerical integration procedure, 
which is rather delicate for these terms. 

One may also give the friction tensor, which is the inverse tensor of the mobility, 

0 0.343 

0.944 0 0.0735 
c(0) = ~ ~ ‘ ( 0 )  = 6nay { 1 + c“; 0 0.577 0 ) Re;’2} (5.28) 

to the lowest order in 

6. Discussion 
We have applied the induced force method to calculate the mobility tensor for a 

sphere moving relative to a fluid in arbitrary homogeneous flow. In this derivation, we 
used a general solution, constructed in $3, for the velocity field valid for an arbitrary 
choice of this homogeneous flow. In this solution, the velocity field is written as 
the sum of the incident homogeneous flow field and the velocity field due to the 
(induced) force distribution on the surface of the sphere. The nature of the second 
term in this solution, (3.12), is very different from the analogous term in the solution 
of the Stokes equation in which the inertial terms are neglected. In (3.12), the position 
of the induced force is replaced by the time-dependent position. This replacement 
corresponds to the transformation to the co-moving frame which is moving along 
with the local velocity field. By analysing the general solution, the closed form of 
the mobility tensor which is valid even for the time-dependent motion of the sphere 
in arbitrary homogeneous flow was derived up to the first order in Re;”. As a 
special case, we calculated the mobility for the short-time regime (the large-frequency 
regime) as well as the stationary case (the small-frequency limit) for simple shear 
flow. The value for the x,z-component which we find for the stationary case agrees 
with Saffman’s result (Saffman 1965). This component gives a lift force on the sphere 
if it lags behind relative to the shear velocity. Saffman derived this lift force using 
the method of matched asymptotic expansions. The analysis by Harper & Chang 
was a straightforward extension of Saffman’s analysis to the other components. Our 
analytical results for the sationary case agree with the expressions given by Harper et 
al., but our numerical for the integrals values differ, often rather considerably, from 
theirs. 

Equation (5.28) for the friction tensor shows that most of the components are 
modified in the same manner as the x, z-component. In particular, the z, x-component 
leads to another type of lift force. If one considers a particle suspended in Poiseuille 
flow, the x, z-component of the friction tensor causes the particle to be accelerated 
toward the axis if the particle lags behind relative to the Poiseuille flow. This was 
pointed out by Saffman (1965). If the particle moves toward the centre of the tube, 
however, the z, x-component of the friction tensor causes the particle to be accelerated 
in the direction opposite to the flow. We use the Poiseuille flow in this context only to 
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illustrate the consequences of both off-diagonal terms in the friction tensor. Poiseuille 
flow is certainly not a convenient environment to measure these terms as other 
contributions which in fact are more important occur (Ishii & Hasimoto 1980). We 
are not aware of any experimental results which confirm the values of the x , z -  and 
z ,  x-components of the friction tensor. 

Our analysis presented here was restricted to the case of the same condition for 
the Reynolds numbers as Saffman’s, Re, << << 1. This can be extended in a 

straightforward manner to the regime which McLaughlin explored, Re,, Re”2 << 1. 
In that case, the Oseen term in (2.9) cannot be neglected. This results in the f act that 
the matrix g(k )  in (3.4) has to be replaced by 

(6.1) 

One can then perform the analysis, in the same way as presented in this paper, only 
for the stationary case, i.e. Au = constant. In this case, the expression for the mobility 
tensor reduces to McLaughlin’s one. Extension to the non-stationary case is not 
trivial. McLaughlin (1993) also considered the case where the sphere is moving close 
to a wall. The induced force method is capable of dealing with this case, too, but we 
do not give a detailed analysis here as it is outside the scope of this paper. 

We have analysed only the case of simple shear. Another example, pure rotational 
flow where /? = -/?+, was given by one of the authors using a formula which he derived 
(Miyazaki 1995) and it reproduced the values which have been derived by the method 
of matched asymptotic expansions. It seems clear that the induced force method is 
a simple and powerful alternative to the method of matched asymptotic expansions. 
This conclusion is further supported by the work of Weisenborn (1985) who analysed 
the motion of a sphere moving along the axis in a rotating cylinder using the same 
method. In both cases, the method gave rise to results which generalized the results 
found using the method of matched asymptotic expansions. 

g(k,  t )  = vk2 - ik * Au( t )  + (1 - 2kk) * /?. 
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Appendix A 
In this appendix, we will give the derivation of (3.3). As the velocity field in the 

absence of the sphere, uo(k, t ) ,  satisfies (3.2) without the induced force field, &(k, t ) ,  
the equation for the perturbation due to the presence of the sphere, 6 v  = u - UO, is 
given by 

k .60  = 0, I 
where po is the hydrostatic pressure in the absence of the sphere. Operating with 
f k  = 1 - kk on both sides of (A 1) and using the incompressible nature of the fluid, 
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one obtains 
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1 
* 6 ~ ( k , t )  = -Pk'&d(k,t), (A2) { + vk2 + (1 - 2kk) fl  - k . f l -  - 

dk P 
where the following relation has been used: 

(A 3 )  

This together with the solution in the absence of the sphere leads to the formal 
solution, (3 .3) .  

a 
= k.fl*--Gu + k i Z . f l . d v .  

dk 

Appendix B 

integration over t can be divided into two parts as follows: 
In this appendix, we will give the derivation of (5.25) more in detail. In (5.24), the 

where f ( k ,  t) is the integrand of (5.24), E EE Rep and 6 is chosen such that 

E < < 6 < < 1 .  (B 2) 

One may expand each of the integrands in (B 1) in terms of appropriate parameters. 
For the first integral, as t is much smaller than 1, one may expand in powers o f t  

Integrating over 0 < t d 6, one obtains up to the first order in all2 

dt f(k,t) = kxkz A A { 2 - - nf,2 (i) - 'I2} + -&hj (2 - 3 f i )  (e6)'I2 + 0(6) . (B4)  

Likewise, in the outer region 6 d t d co, one can expand in powers of E :  

E ( f , f z  - fit) + 0 ( E 2 ) .  
t )  

f (k  t) = 

Using dD(k, t)/dt = c2(k ,  t ) ,  

+O(E/6).  (B 6 )  

Combining (B4) and (B6), one finds that the first two terms on the right-hand side 
of (B 6) cancel the corresponding terms in (B 4). Neglecting the higher-order terms in 
E ,  one obtains (5.25). 
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The approximate expressions for other components are also evaluated in the same 
way. We will only list the results. After lengthy manipulation, one obtains 

where 

f f2t (f,  + f 2 t ) f 2  
(2kx + k,t)( 1 - f i ) t  - + 

1-k: 1-k :  
f z  

D3I2(1;, t) 
AYY& t )  = 

1 

D3I2(i;, t) 

D3I2(k, t) 

[-(212, + f,t)fxf,2t + Q ( k ,  t)] , A z x k  t) = 

A f,f,2t ( f ,  + 
f 2  

(2fx + f z t ) ( l  - f;)t - 7 - A I(k,t)] . 
1-k :  1 - k :  

AZZ(k, t) = 

The other components are found to be zero after integrating over k.  Numerical 
integration of the above expressions leads to the results given in (5.27). 
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